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The effects of resistive forces on unsteady shallow flows over rigid horizontal boun-
daries are investigated theoretically. The dynamics of this type of motion are driven
by the streamwise gradient of the hydrostatic pressure, which balances the inertia of
the fluid and the basal resistance. Drag forces are often negligible provided the fluid
is sufficiently deep. However, close to the front of some flows where the depth of
the moving layer becomes small, it is possible for drag to substantially influence the
motion. Here we consider three aspects of unsteady shallow flows. First we consider
a regime in which the drag, inertia and buoyancy (pressure gradient) are formally of
the same magnitude throughout the entire current and we construct a new class of
similarity solutions for the motion. This reveals the range of solution types possible,
which includes those with continuous profiles, those with discontinuous profiles and
weak shocks and those which are continuous but have critical points of transition at
which the gradients may be discontinuous. Next we analyse one-dimensional dam-
break flow and calculate how drag slows the motion. There is always a region close
to the front in which drag forces are not negligible. We employ matched asymptotic
expansions to combine the flow at the front with the flow in the bulk of the domain
and derive theoretical predictions that are compared to laboratory measurements of
dam-break flows. Finally we investigate a modified form of dam-break flow in which
the vertical profile of the horizontal velocity field is no longer assumed to be uniform.
It is found that in the absence of drag it is no longer possible to find a kinematically
consistent front of the fluid motion. However the inclusion of drag forces within
the region close to the front resolves this difficulty. We calculate velocity and depth
profiles within the drag-affected region, and obtain the leading-order expression for
the rate at which the fluid propagates when the magnitude of the drag force is
modelled using Chézy, Newtonian and power-law fluid closures; this compares well
with experimental data and provide new insights into dam-break flows.

1. Introduction
Naturally occurring flows such as rivers, tidal currents, turbidity and debris flows

are often of a sufficiently low aspect ratio, here defined as the ratio of their depth
to streamwise extent, that the fluid pressure adopts hydrostatic balance and their
dynamics are controlled by forces which are parallel to the underlying boundary
(see, for example, Parker 1976; Simpson 1997; Iverson 1997). Furthermore, in many
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situations the effects of basal drag on these flows can be neglected and the motion
is governed by a balance between fluid inertia and the streamwise pressure gradient.
However, when the depth of the flowing layer becomes sufficiently small it is no longer
possible to neglect drag and a complete description of the flow must include hydraulic
resistance. In this contribution we study a series of flows over rigid, horizontal
boundaries and we demonstrate how to calculate the influence of the basal drag. These
flows are gravity-driven by the input of dense fluid (see, for example, Simpson 1997),
and dam-break flows which arise when fluid is released from rest following the sudden
removal of a vertical barrier (Ritter 1892). We note that there is a close connection
between the two: dam-break flows can be equivalently treated as gravity-driven
motion from a constant source of dense fluid (Hogg & Woods 2001).

Gravity currents arise due to the intrusion of dense fluid into a less dense
surrounding fluid. The motion over a horizontal, rigid boundary is driven by
the buoyancy force associated with the density difference between the source and
surrounding fluids. For inertially dominated gravity currents there have been a number
of studies of their motion (see, for example, Simpson 1997; Hoult 1972; Huppert &
Simpson 1980) and there is a wide-range of environmental applications including the
propagation of sea breezes, the intrusion of saline fluid into freshwater lakes and, if the
density difference is due to suspended particulate matter, the motion of volcanic ash
clouds. These flows have usually been modelled mathematically using shallow-layer
theories (Hoult 1972; Rottman & Simpson 1983; Gratton & Vigo 1994). Hogg &
Woods (2001) showed that while the initial motion of these flows may be independent
of basal drag, the later stages become strongly influenced by drag forces. Their study
examined the transition between these two regimes and established new models for
the motion in which the drag balances the buoyancy forces. In an analogous study
of flow through a sparse, porous matrix, Hatcher, Hogg & Woods (2000) found a
similar transition and were able to experimentally verify the transition and the new
solution for the motion. In this paper, by considering a source which delivers fluid
at a time-dependent rate, we identify a regime in which the drag, pressure gradient
and inertial terms are all of the same order of magnitude throughout the entire flow
and so there is no transition between regimes. Instead we construct solutions that are
valid for the entire motion.

The one-dimensional dam-break flow that arises following the sudden removal of
a vertical barrier, behind which fluid is initially at rest, has been studied for many
years (Ritter 1892; Whitham 1974). Not only is it an important paradigm problem in
the fluid mechanics of nonlinear shallow inertial flows, but it has been reproduced in
laboratory experiments and may be of significance in large-scale environmental flows
(Bellos & Sakkas 1987; Stansby, Chegini & Barnes 1998; Capart & Young 1998).
When drag is neglected there is an analytical solution to the governing shallow-
water model of the flow (Ritter 1892); denoting the initial height of fluid behind
the dam and gravitational acceleration by h0 and g, respectively, the velocity of the
flow varies linearly with distance from the dam, attaining a speed of 2

√
gh0 at the

front, and the depth of the flow decreases quadratically towards the front (see § 4).
While the drag forces may be neglected in the main body of the flow, they are
non-negligible in the ‘tip’ region close to the front and act to reduce the speed of
the front. Keulegan (1950), Dressler (1954) and Lauber & Hager (1998), amongst
others, report experimental observations of the shape of the intruding front of fluid,
its velocity and the effects of drag forces. The key observations are the retardation of
the leading front of fluid and the change in the curvature of the profile, to develop
a blunt-nosed flow. This problem has been analysed theoretically by Dressler (1952)
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and Whitham (1955); Dressler (1952) employed a regular perturbation scheme based
on the successive approximation of the ‘outer’ flow, away from the front, whereas
Whitham (1955) employed an integral model of the ‘tip’ region in which drag is
non-negligible and balanced the forces acting on it. In this study we employ matched
asymptotic expansions in which an ‘inner’ drag-affected region around the tip is
matched to an ‘outer’ region in which drag is negligible. This provides the spatial
structure of the height and velocity fields near the front, together with the reduction
of speed due to basal drag. This latter result is similar, but not identical, to the two
previous studies, which employed more limited asymptotic techniques. The results are
of use since dam-break flows are readily generated in the laboratory (Stansby et al.
1998; Lauber 1997) and are used regularly as tests of numerical calculations (see, for
example, Bellos & Sakkas 1987) and as an idealized flow in engineering applications
(Peregrine & Williams 2001; Pritchard & Hogg 2002).

We note that a similar approach has been employed to study the unsteady flow
down slopes of Newtonian (Hunt 1987) and non-Newtonian fluids (Huang & Garcia
1998). Likewise, these flows are calculated by matching between the bulk of the flow
and the ‘tip’ region. For these flows, however, the outer motion in the bulk of the
flow is governed by a simple dynamical balance between gravitational acceleration
and basal drag, with negligible variation of the fluid inertia. This balance emerges
as an algebraic relationship between the height and velocity fields (Weir 1983) and
matching can be achieved in terms of a single dependent variable. In this study of
dam-break flows over a horizontal bed, the bulk flow is also governed by a simple
wave equation, but matching between the tip and outer regions is more complicated
and is enforced by simultaneously matching the height and velocity fields.

In this contribution, we extend the analysis of dam-break flow in a number
of ways. First we formulate a model of the flow based on depth-averaging that
includes the possibility of shear in the horizontal velocity profile. Even for flows
in the absence of drag this significantly modifies the dam-break solution and we
find that it is not possible to construct a consistent solution for the motion; rather,
we find that it is necessary to include resistive forces. Furthermore we investigate
different representations of the basal drag, including forms that represent the resistance
associated with fluids of Newtonian and power-law rheology. This broadens the
application of this work to include fluids such as debris, muds and concentrated
suspensions (Iverson 1997; Ancey 2002).

The paper is organized as follows: we first formulate the problem using the shallow-
water equations and derive the jump conditions across discontinuities in the flow (§ 2).
We then analyse gravity-current flow for the special case in which the drag, pressure
gradient and inertial forces are of equal magnitude (§ 3). Here we construct new
similarity solutions for the motion and thus extend the analysis of Gratton & Vigo
(1994) to include drag forces. This analysis also reveals the significance of flows
with discontinuities and points of critical transition where the field variables remain
continuous but have discontinuous gradients. Indeed the structure of these somewhat
idealized flows provides analytical insight for subsequent sections of this study. In § 4
we analyse dam-break flow in which the dynamical balance varies in space and we
employ matched asymptotic expansions to calculate the flow. The flows we calculate in
this section are continuous but also exhibit a transition point where the gradients are
discontinuous. Finally in § 5 we investigate modified dam-break flow and demonstrate
how shear in the velocity profile affects the results. We compare our theoretical
predictions with experimental observations in § 4 and § 5. A summary and some
concluding comments are given in § 6.
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Figure 1. The configuration of the flow.

We also include an appendix in which drag is modelled as a Coulomb resistance.
Such an approach has been applied to flows of debris (Iverson 1997) and granular
materials (Savage & Hutter 1989). We demonstrate that the effects of drag are
different in this case because they are uniform throughout the fluid domain.

2. Formulation
We consider a layer of fluid of density ρ, flowing over a rigid horizontal surface.

The streamwise and vertical coordinates are denoted by x and z, respectively, and
there is assumed to be no cross-stream variation so that the depth of the layer is
given by h(x, t) (see figure 1). On the assumption that the horizontal lengthscales of
the motion, L, are much greater than the vertical lengthscales (h/L � 1), we find that
vertical accelerations are negligible and the pressure adopts a hydrostatic distribution,
given by

p = ρg(h − z), (2.1)

where p denotes the pressure field and g denotes gravitational acceleration. The
assumption of a hydrostatic pressure leads to the shallow-water equations, which
express conservation of mass and momentum (see, for example, Peregrine 1972;
Whitham 1974). Denoting the horizontal velocity by u, mass conservation is given by

∂h

∂t
+

∂

∂x

∫ h

0

u dz = 0. (2.2)

Here we have assumed that the flowing shallow layer does not entrain fluid from its
surroundings. Further, assuming that the top surface of the layer is stress-free and
denoting the shear stress on the bottom surface by τb, the depth-integrated horizontal
momentum equation may be written as

∂

∂t

∫ h

0

u dz +
∂

∂x

∫ h

0

u2 dz +
∂

∂x

∫ h

0

p

ρ
dz = −τb

ρ
. (2.3)

To complete this shallow-layer model we write

hu =

∫ h

0

u dz and βhu2 =

∫ h

0

u2 dz, where β = 1+
1

h

∫ h

0

(
1− u

u

)2

dz. (2.4)

The coefficient β is often termed a shape factor. Its magnitude reflects the shear in
the profile of the horizontal fluid velocity and may depend on factors such as the
Reynolds number or the boundary roughness (Piau 1996). Although β � 1, it is fre-
quently set equal to unity (Iverson 1997; Ancey 2002; Iverson & Denlinger 2001). We
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demonstrate in § 5 that this may have a significant effect on the nature of the predicted
flows.

Finally we relate the boundary shear stress, τb, to the height, velocity and mechanical
properties of the fluid. Although the shear stress could be calculated in principle from
the full governing equations, we adopt a common, much simpler approach and
write semi-empirical expressions for the shear stress. This approach is used in depth-
integrated models of rivers and estuaries (Parker 1976), turbidity currents (Parker,
Fukushima & Pantin 1986) and mud flows (Coussot & Proust 1996; Mei, Liu & Yuhi
2002). If viscous effects are negligible we express the boundary shear stress in terms
of the product of the fluid density ρ, the square of the horizontal velocity u, and a
Chézy drag coefficient CD:

τb = ρCDu2. (2.5)

The magnitude of the drag coefficient is determined empirically but usually falls in
the range 0.01–0.001 for most environmental flows (Parker 1976; Lewis 1997).

If, however, the drag arises through viscous interactions with the boundary, the
shear stress is given by

τb = c1µu/h, (2.6)

where µ is the dynamic viscosity and c1 is a dimensionless constant. This model has
been employed by Ng & Mei (1994) and is pursued in § 5. It can be generalized to
express the drag associated with a fluid with power-law rheology. In this case

τb = cnµn

(
u

h

)n

, (2.7)

where µn is the viscosity coefficient and n is the flow index for the fluid, with n=1
corresponding to a Newtonian fluid. In this expression cn is a dimensionless constant.
The analyses developed in § 4 and § 5 are independent of the precise values of the
drag coefficient, CD , the dimensionless constants cn and the shape factor β . Indeed,
we show in § 5 that it is not necessary to assume that β is constant throughout the
flow. However, to illustrate the results, following Ng & Mei (1994) and Huang &
Garcia (1998) we assume that the velocity field is given by

u(x, z, t) = u(x, t)
1 + 2n

n + 1

(
1 −

(
1 − z

h

)(n+1)/n
)

. (2.8)

The profile satisfies no slip at the base and vanishing shear stress at the free surface.
This assumption of vertical structure is similar to the approach employed by the
von Kármán momentum integral in boundary layers (see, for example, Batchelor
1967). We anticipate that the results will not depend strongly on the precise vertical
structure because a depth-integrated model is employed. However, we will show that
the structure of the flows when the shape factor β is equal to unity is different from
those for which β exceeds unity. Given the vertical structure (2.8), we find that

β =
2(1 + 2n)

2 + 3n
and cn =

(
1 + 2n

n

)n

. (2.9)

Note that for shear-thinning fluids (0 <n � 1), the shape factor lies in the range
1 < β � 6/5.

In the Appendix we consider an additional case, which occurs when we take β =1
and a Coulomb drag term. This combination has been employed in studies of debris
flows and granular avalanches, although the physical basis for such a model is less
well developed than for simpler fluids.
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The system of equations is hyperbolic and may admit discontinuous solutions. The
flows either side of these weak shocks are connected by jump conditions which express
conservation of mass and momentum across the moving discontinuity. Denoting the
shock speed by c, these jump conditions are given by

[(u − c)h]
x=x+

s

x=x−
s

= 0 and
[
βu2h − 2uch + c2h + 1

2
gh2

]x=x+
s

x=x−
s

= 0, (2.10)

where xs is the position of the shock (Whitham 1974).
In this study, apart from a brief discussion in § 3, we do not impose any dynamic

conditions at the front of the flow. Instead the front position emerges as part of the
solution, where the height field vanishes. Thus, denoting the front position by xf (t),
it satisfies

h(xf , t) = 0 and
dxf

dt
= u(xf , t). (2.11)

Initial conditions and source conditions depend upon the flow under consideration
and will be introduced separately in each section. We note that this system of equations
has been employed to model gravity current motion, which occurs when relatively
dense fluid intrudes along a boundary under less dense fluid (Hogg & Woods 2001).
For these flows, driven by the difference density, �ρ, between the two fluids, gravity
g is replaced by reduced gravity, g′ ≡ �ρg/ρ.

In the analyses that follow, for notational clarity, the over-bar notation is dropped
and the velocity field u(x, t) henceforth denotes the depth-averaged velocity field.

3. Gravity currents with inertia, buoyancy and drag
Gravity currents flowing over horizontal boundaries have usually been modelled

using the depth-integrated shallow-water equations (2.2) and (2.3) with β = 1 (see,
for example, Hoult 1972; Rottman & Simpson 1983). The flows are generated by a
source of dense fluid for which the volume flux per unit width is given by

uh = Qαt
α−1 at x = 0, (3.1)

where α and Qα are constants. The Froude number at the source is given by

u/
√

gh = F0 at x = 0. (3.2)

In this section in which β = 1, it is assumed that the source Froude number, F0, is
greater than unity so that it is possible to maintain both the flux and Froude number
conditions. For subcritical flow with F0 < 1, the source Froude number condition is
dropped as the source may be influenced by downstream conditions. We note that
for flows with β > 1, Garrett & Gerdes (2003) showed that the hydraulic control
at which downstream conditions cannot influence upstream behaviour occurs at a
Froude number less than unity.

The governing equations have been integrated by a number of investigators using
both analytical and numerical techniques (Hoult 1972; Rottman & Simpson 1983;
Hallworth, Hogg & Huppert 1998). In particular, in the absence of drag (CD = 0)
it is possible to construct similarity solutions for the motion, which provide useful
intermediate asymptotics and have been borne out by experimental realizations of
the flows (Huppert & Simpson 1980). Gratton & Vigo (1994) have systematically
constructed the solutions for a range of conditions at the source (0 � α < 4). They
identify four different types of solution for the height and velocity fields. These
are continuous, discontinuous, continuous with a critical transition and discontinuous
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with a critical transition. When the drag is non-vanishing, the flow at sufficiently early
times is only weakly affected by drag. Conversely, at later times the dynamics may
be controlled by a balance between drag and the streamwise pressure gradient (Hogg
& Woods 2001). In this section we study flows for which inertia, buoyancy and drag
are all formally of the same magnitude. This analysis is analogous to the approach
recently adopted by Acton, Huppert & Worster (2001), who in a different physical
context examined a dynamical regime in which three physical effects were formally
of the same order of magnitude. They found that the form of solutions possible in
this somewhat idealized scenario yielded significant insight into the general nature of
the flow. In this section we pursue the same approach before, in subsequent sections,
analysing flows in which the dominant dynamical balance varies spatially.

To establish this regime, we first employ scaling analysis to determine α and then
we construct a similarity solution. Balancing the inertia, pressure gradient and drag
yields

u

t
∼ gh

xf

∼ CDu2

h
. (3.3)

The volume flux at the source implies that

uh ∼ Qαt
α−1, (3.4)

and for kinematic consistency we requite u ∼ xf /t . Thus we deduce that the three
terms of (3.3) can only be of the same magnitude for all time if α = 4. Hence we seek
a similarity solution of the form

xf = λ(gQ)1/3t2, (3.5)

u = 2λ(gQ)1/3tU (y), (3.6)

h = 4λ2

(
Q2

g

)1/3

t2H (y), (3.7)

where y = x/xf and λ, H (y) and U (y) are to be determined. A similarity solution
of this form is valid provided that the aspect ratio of the flow remains sufficiently
small that vertical accelerations are negligible and the pressure adopts a hydrostatic
distribution. Thus we require that

Ω ≡
(

Q

g2

)1/3

� 1. (3.8)

Sources with volume fluxes depending on t4 were excluded by Gratton & Vigo
(1994) on the assumption that small aspect ratios could not be satisfied for all
time. Nevertheless, provided (3.8) is satisfied the solutions remain formally valid. On
substituting (3.5)–(3.7) into the governing equations, we obtain

H − yH ′ + (UH )′ = 0, (3.9)

1
2
U − yU ′ + UU ′ + H ′ = − CD

4λΩ

U 2

H
, (3.10)

where a prime denotes differentiation with respect to y. The sole dimensionless para-
meter is Λ = CD/Ω , which may be much greater, or much less, than unity, depending
on the magnitude of the drag. The boundary conditions at the source are then given
by

UH = 1/[2λ]3 and U/H 1/2 = F0 at y = 0, (3.11)
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provided the flow at the source is supercritical (F0 � 1). At the front of the flow

H = 0 and U = 1 at y = 1. (3.12)

Flows with weak shocks may be constructed. The jump conditions for a shock at y = ys

and shock speed c = 2yst(gQ)1/3 are now given in terms of the similarity variables by

[(U − ys)H ]
y=y+

s

y=y−
s

= 0 and
[
(U − ys)

2H + 1
2
H 2

]y=y+
s

y=y−
s

= 0. (3.13)

3.1. Solutions in the absence of drag (CD = 0)

Guided by the study of Gratton & Vigo (1994) we expect solutions for α = 4 to have
the following forms: continuous; continuous with a critical transition, at which the
gradients of U (y) and H (y) are discontinuous; and discontinuous. First we note a
simple analytical solution for F0 =

√
2, given by

U = 1 and H = 1
2
(1 − y). (3.14)

For this case, we deduce that λ=2−2/3. By forming series expansions in the regime
|1 − y| � 1, we expect all solutions to have the same form as (3.14). However, other
source Froude numbers may be attained by introducing continuous or discontinuous
transitions. We observe that the governing equations may be re-written as

[(U − y)2 − H ]H ′ = yH − 1
2
UH, (3.15)

[(U − y)2 − H ]U ′ = H − 1
2
U (U − y). (3.16)

Thus there may be solutions with discontinuous gradient if (U − y)2 − H = 0 and
U = 2y, simultaneously. For the solution given by (3.14), this occurs at y =1/2 and we
may construct continuous solutions with a discontinuous gradient at this transition
point. These solutions are most readily constructed by forming series expansions
around the transition point (y = 1/2). We find that two different expansions are
possible, which lead to a range of solutions that correspond to a range of source
Froude numbers between 1 and 2. For the solution with F0 = 2, when |y − 1/2| � 1,
the height and velocity fields are given by

H = 1
4

− 1
4
(y − 1/2) − 3

32
(y − 1/2)2 + . . . , (3.17)

U = 1 − 1
2
(y − 1/2) − 5

16
(y − 1/2)2 + . . . . (3.18)

Integrating to y = 0 yields U (0) = 1.2 and H (0) = 0.36. Alternatively we find an
expansion in the regime |y − 1/2| � 1 of the form

U = 1 − 2a(1/2 − y)5/2 + . . . , (3.19)

H = 1
4

− 1
2
(y − 1/2) + a(1/2 − y)5/2 + . . . , (3.20)

where a is an arbitrary constant. Varying the magnitude of a corresponds to the
solutions with 2 > F0 � 1.

Discontinuous solutions may be constructed for those flows with a source Froude
number in excess of 2. For these source conditions we introduce a position ys , with
ys > 1/2, at which the discontinuity occurs, and we use the jump conditions for mass
and momentum to relate the solutions either side of the discontinuity. We plot the
height and velocity fields for these similarity solutions in figure 2.

3.2. Solutions with drag (CD > 0)

Flows with non-vanishing drag exhibit the same range of solutions as those presented
above, depending on the magnitude of the source Froude number F0 and the drag
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Figure 2. The similarity solutions for the height H (y) and velocity U (y) of an inertial gravity
current in the absence of drag plotted as functions of the similarity variable y for various
source Froude numbers: (i) F0 = 1, λ = 0.985; (ii) F0 = 1.095, λ= 0.986; (iii) F0 = 1.414, λ= 1
(iv) F0 = 2, λ= 1.050; (v) F0 = 2.309, λ= 1.106; (vi) F0 = 2.789, λ= 1.130; and (vii) F0 = 6.648,
λ= 1.361.

coefficient CD (or Λ). In the region close to the front of the flow (|1 − y| � 1), the
velocity and height take the form

H =

[
Λ

2λ
(1 − y)

]1/2

+ . . . and U = 1 + 1
3
(1 − y) + . . . . (3.21)

Thus the profiles of these drag-affected flows are rather different from those in the
absence of drag: they are blunt nosed with H (y) ∼ (1 − y)1/2, rather than adopting
a linear profile close to the front. This arises because the motion at the front is
most strongly affected by drag and so the current develops an increased streamwise
pressure gradient to counter the resistance. This is analogous to the anatomy of a
drag-affected current reported by Hogg & Woods (2001).

To analyse these flows we first note that if there exists a transition point (y = yc)
in the flow at which there are discontinuous gradients, then the height and velocity,
denoted by Hc and Uc, respectively, are related by

Hc = (Uc − yc)
2, (3.22)

Hc(Uc − yc) = 1
2
UcHc + ΛU 2

c

/
(4λ). (3.23)
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The transition point, yc, occurs between 0 and 1
2
, with the limiting case yc = 0 at

Λ =1 and F0 = 1. Thus for Λ > 1 there are no points at which (3.22) and (3.23) are
simultaneously satisfied, and apart from specific solutions with subcritical conditions
at the source, only discontinuous solutions may be constructed.

When 0 < Λ < 1, we seek series expansion for the height and velocity fields around
the point y = yc in the form

H = Hc + a1(y − yc) + aγ (y − yc)
γ + . . . , (3.24)

U = Uc + b1(y − yc) + bγ (y − yc)
γ + . . . , (3.25)

where a1, b1, aγ , bγ and γ are constants (and γ is assumed to be greater than unity).
By substituting these series expansions into the governing equations and equating
powers of (y − yc), we deduce that

a1 = −(Uc − yc)(b1 + 1), (3.26)

3b2
1 + b1

(
3 − 2

yc

Uc

− yc

2(Uc − yc)

)
+

Uc − 2yc

2(Uc − yc)
= 0. (3.27)

Furthermore we find that

aγ = −(Uc − yc)bγ , (3.28)

−3γ b1 + γ − 3b1 − 5/2 − (Uc − 2yc)(3Uc − 2yc)

2Uc(Uc − yc)
= 0, (3.29)

and the constant aγ is arbitrary. The quadratic equation (3.27) yields two solutions for
b1 and so from (3.29) we calculate two possible values of γ . However, one of the values
is less than unity and so is inconsistent with the regime under consideration; for this
value of γ we must set aγ = 0. This series expansion leads to the continuous solution
with the largest source Froude number given Λ; we denote this Froude number
by F0m(Λ). For the other value of b1 (and γ ), aγ remains an undetermined constant
which may be chosen arbitrarily. Varying aγ leads to continuous solutions with source
Froude numbers in the range between unity and F0m. Note that for Λ= 0, we find
that the solution to (3.27) is given by b1 = 0 or b1 = −1/2, which leads to γ =5/2 or
γ =2/5, respectively. We discount the root γ = 2/5 as this is inconsistent with our
series expansion, which had assumed that γ > 1. Hence we have recovered the drag-free
solutions presented in (3.18) and (3.19). We further find that when Λ = 0, F0m = 2.

We plot the different solution regimes as a function of F0 and Λ in figure 3 and note
that continuous solutions are possible only for 1 � Λ � 0 and F0m(Λ) � F0 � 1. (This
regime includes solutions which are continuous and have continuous gradient — for
example, when Λ =0, this solution is given by (3.14).) For Λ > 1, only discontinuous
supercritical solutions are possible, with the further restriction that F0 � F0s(Λ). This
lower bound on the source Froude number corresponds to having a shock at the
source (y = 0). There are, however, continuous subcritical solutions for particular
values of the source Froude number, given by F0b(Λ). This curve is also plotted
in figure 3. In figures 4, 5 and 6 we illustrate the types of solutions possible when
Λ =0.4, 1.0 and 2.0.

3.3. Solutions with drag (CD > 0) and finite Froude number at the front

We now analyse drag-affected gravity currents in the regime for which inertia,
buoyancy and drag forces remain of the same magnitude, with a different condition
at the front of the current. Rather than specifying the front as the location at which
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Figure 3. The regimes of continuous and discontinuous similarity solutions for inertial gravity
currents as functions of the source Froude number F0 and the drag coefficient Λ. Continuous
solutions are possible for 1 � F0 � F0m(Λ), while discontinuous, supercritical solutions are
possible when F0 >F0m(Λ) and Λ< 1, and when F0 > F0s(Λ) and Λ> 1. Continuous subcritical
solutions exist for F0 = F0b(Λ).

Figure 4. The similarity solutions for the height H (y) and velocity U (y) of an inertial
gravity current for Λ= 0.4 as functions of the similarity variable y with various source Froude
numbers: (i) F0 = 1, λ= 0.462; (ii) F0 = 1.190, λ= 0.464; (iii) F0 = 1.353, λ= 0.467 and (iv) F0 =
2.000, λ= 0.487.
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Figure 5. The similarity solutions for the height H (y) and velocity U (y) of an inertial gravity
current for Λ= 1 as functions of the similarity variable y with two source Froude numbers:
(i) F0 = 1, λ= 0.404; and (ii) F0 = 1.992, λ= 0.421.

the height vanishes, we now impose a frontal Froude number given by

u = Fr
√

gh at x = xf (t). (3.30)

The use of this condition is common in the study of Boussinesq gravity currents
(Benjamin 1968; Huppert & Simpson 1980; Rottman & Simpson 1983) and in
sufficiently deep ambient fluid it is assumed that the Froude number Fr is constant.
For example, Huppert & Simpson (1980) suggest that Fr =1.2. (Recall that to apply
this analysis to Boussinesq gravity currents we must substitute reduced gravity g′ for
gravity g.) It is still possible to construct similarity solutions of the form (3.5)–(3.7),
but the boundary condition at the front is now given by

U = Fr
√

H and U = 1 at y = 1. (3.31)

Gratton & Vigo (1994) systematically explored the types of solution possible in the
absence of drag. They showed that for Fr < 2 only discontinuous, supercritical solu-
tions may be formed, but for Fr � 2, continuous solutions with points of critical transi-
tion are possible provided the Froude number at the source, F0, satisfies 1 � F0 � 2.

We calculate solutions when Fr = 1.2 for a range of values of the Froude number
at the source, F0, and the drag coefficient, Λ. We plot in figure 7 the regimes in
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Figure 6. The similarity solutions for the height H (y) and velocity U (y) of an inertial gravity
current for Λ= 2.0 as functions of the similarity variable y with two source Froude numbers:
(i) F0 = 1.184, λ= 0.359; and (ii) F0 = 2.000, λ= 0.371. The solution with F0 = 1.184 has a
shock at y = 0.

Figure 7. The regimes of continuous and discontinuous similarity solutions for inertial
gravity currents as functions of the source Froude number F0 and the drag coefficient Λ
when Fr = 1.2. Continuous solutions are possible for 1 � F0 � F0m(Λ), while discontinuous,
supercritical solutions are possible when F0 > F0m(Λ) and Λ< 1, and when F0 >F0s(Λ) and
Λ> 1. Continuous subcritical solutions exist for F0 =F0b(Λ).
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which different types of solutions may be constructed. When Λ =0, in accord with
Gratton & Vigo (1994), we find that only discontinuous solutions are possible. This
is most readily established by integrating the governing differential equations, (3.9)
and (3.10), from y = 1 to a point at which H = (U − y)2, but at which (3.23) is not
satisfied. Thus it is not possible to construct continuous solutions. However when
0.241 � Λ � 1, we find that it is now possible to construct continuous solutions with
points of critical transition, because we can now find a point yc at which (3.22) and
(3.23) are simultaneously satisfied. The boundary between the regimes of continuous
and discontinuous solutions is given by a curve F0s(Λ), which is identical to the
portion of the curve shown in figure 3 for Λ � 0.241. Furthermore as in § 3.2, we may
only construct discontinuous supercritical solutions when Λ > 1 and there is the same
lower bound on the permissible values of source Froude number, denoted F0m(Λ).
This corresponds to flows with a shock at the source. There is also the same branch
of continuous subcritical solutions, denoted by F0b(Λ). The effect of drag, therefore,
is to cause the currents to develop steeper gradients close to the fronts of the flows to
overcome the drag forces in that region. This then lowers the internal Froude number
of the supercritical motion and means that for a sufficiently large drag coefficient it
is now possible to find flows that attain critical conditions at some point within their
interior so that continuous solutions may be constructed.

3.4. Modified gravity currents (β > 1)

To complete this analysis of the dynamics of gravity currents for which inertia,
buoyancy and drag are all of the same order of magnitude, we consider flows
in which there is shear in the velocity profile so that the shape factor β exceeds
unity. In this case the dimensionless governing equations are the expression for mass
conservation (2.2) and the horizontal momentum equation, which is given by

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= −CD

u2

h
− 2(β − 1)u

∂u

∂x
− (β − 1)

u2

h

∂h

∂x
. (3.32)

We seek similarity solutions to these equations of the form given by (3.5)–(3.7). In
terms of the similarity variables the momentum equation may be written

[(U − y + 2(β − 1)U ]U ′ +

[
1 +

(β − 1)U 2

H

]
H ′ = −ΛU 2

4λH
− U

2
. (3.33)

In this subsection, rather than construct solutions to these governing equations and
boundary conditions (3.11) and (3.12) for all values of the parameters β, F0 and Λ,
we examine two important facets of the solution. First we seek a series solution in
the region close to the front. We find that in the regime |y − 1| � 1, the similarity
solutions are given to leading order by

H =
Λ

4λ(β − 1)
(1 − y) + . . . and U = 1. (3.34)

Note that if β = 1 then this expression is singular and instead the behaviour close to
the front is given by (3.21). In addition if the current is drag-free (Λ = 0) but β > 1
then this series solution does not provide the leading-order terms; in fact we find that
it is not possible to construct any solution which satisfies the boundary conditions
at the front. This phenomenon will be discussed fully in § 5 for dam-break flows; it
arises because the characteristic velocity of the governing equations exceeds the fluid
speed and so it is not possible to construct solutions with purely kinematic conditions
at the front.
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We further observe that critical transitions at y = yc occur when

β(Uc − yc)
2 = Hc, (3.35)

where Hc = H (yc) and Uc = U (yc). This corresponds to a Froude number of β−1/2,
which is less than unity. This departure was discussed by Garrett & Gerdes (2003)
and indicates that hydraulically choked conditions occur at Froude numbers less
than unity for flows with velocity profiles that include shear. We may also deduce
the maximum drag coefficient, Λm, for which continuous supercritical flows may be
found. This may be shown to be given by

Λm = (2β − 1)β2/3. (3.36)

We note that Λm > 1 when β exceeds unity, reflecting that for flows with velocity shear
a larger drag is required to attain critical conditions at the source. Again, this occurs
because of the increased characteristic velocity when β > 1, which will be discussed
further in § 5.

4. Dam-break flow
The dam-break solutions to the shallow-water equations emerge as exact solutions

to the governing equations (2.2) and (2.3) for β = 1. The flow corresponds to the one-
dimensional motion over a rigid horizontal boundary that results from the sudden
release of stationary fluid from behind a vertical barrier (Ritter 1892; Whitham 1974).
The initial depth of fluid behind the dam, which is located at x = 0, is denoted h0

and the horizontal surface in front of the dam is initially free of fluid. The solution
in the absence of drag is solved by the method of characteristics to give the following
height and velocity fields

u =
2

3

(
x

t
+

√
gh0

)
, (4.1)

h =
1

9g

(
2
√

gh0 − x

t

)2

. (4.2)

These are valid for −1 � x/[t
√

gh0] � 2 and the position of the front of the flow is
given by

xf (t) = 2t
√

gh0. (4.3)

An alternative view of the dam-break solution is to treat only the flow in x � 0,
generated by a constant volume flux per unit width at the origin, q = 8(gh3

0)
1/2/27,

with the Froude number at the source equal to unity (Gratton & Vigo 1994; Hogg &
Woods 2001).

In this solution, basal drag has been neglected on the assumption that
CDu2/h � g∂h/∂x. While this is valid in the bulk of the flow, close to the front,
x = xf (t), the effects of drag are no longer negligible. Thus there is a region close
to the front within which the dynamical balance is different from the rest of the
flow. We estimate the extent of this region by balancing the drag and the streamwise
pressure gradient. Denoting ξ = xf (t) − x, we find that when ξ � xf , u ∼ (gh0)

1/2 and
h ∼ (1/g)(ξ/t)2. Thus we deduce that drag is not negligible when

ξ 3 ∼ CDg2h0t
4. (4.4)

This scaling for the spatial extent of the drag-affected region yields an identical result
to that proposed by Whitham (1955).
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In what follows we construct a matched asymptotic expansion for the velocity and
height fields. We match between two regions: the ‘inner’ region, which is located close
to the front and within which the drag is non-negligible; and the outer region, which
is far from the front and where the dynamics are controlled by a balance between
fluid inertia and the streamwise pressure gradient.

We first non-dimensionalize the problem using (h0/g)1/2 and h0 as time- and
lengthscales, respectively. Henceforth all variables will be assumed to be dimensionless.
Furthermore we define ε =C

1/3
D ; the expansions are based on the regime ε � 1.

The outer problem is given by h =hd(x, t) +O(ε) and u = ud(x, t) + O(ε), where

hd =
1

9

(
2 − x

t

)2

and ud =
2

3

(
1 +

x

t

)
. (4.5)

These correspond to the dimensionless dam-break solutions (cf. (4.1) and (4.2)). For
the inner region we introduce a scaled spatial coordinate X = (xf − x)/ε, so that the
extent of the inner region corresponds to X = O(1), as indicated in the scaling given
above. The governing equations are therefore given by

∂h

∂t
+

ẋf

ε

∂h

∂X
− 1

ε

∂

∂X
(uh) = 0, (4.6)

∂u

∂t
+

ẋf

ε

∂u

∂X
− u

ε

∂u

∂X
− 1

ε

∂h

∂X
= −ε3u2

h
, (4.7)

and the boundary conditions at the front are given by

h = 0, u = ẋf at X = 0, (4.8)

where a dot denotes differentiation with respect to time. Matching to the outer regime
demands that h → hd and u → ud as X → ∞ and so we introduce the following series
expansions for the height and velocity fields within the inner region:

h = ε2H0(X, t) + . . . , (4.9)

u = U0(X, t) + εU1(X, t) + . . . , (4.10)

xf = xf 0(t) + εxf 1(t) + . . . . (4.11)

We substitute these series into the governing equations (4.6), (4.7) and equate at each
order of ε. At O(1/ε), we deduce

U0(X, t) = ẋf 0. (4.12)

Thus the velocity is independent of X to leading order throughout the inner region
close to the front of the flow. (This result was assumed by Whitham (1955) using an
integral model, as discussed below.) At O(1) we find that

∂H0

∂t
+ ẋf 1

∂H0

∂X
− ∂

∂X
(U1H0) = 0, (4.13)

∂U0

∂t
= 0. (4.14)

The second of these, (4.14), implies that the velocity of the front is constant in time
to leading order. Finally at O(ε) from (4.7), we find

∂U1

∂t
+ ẋf 1

∂U1

∂X
− U1

∂U1

∂X
− ∂H0

∂X
= −U 2

0

H0

. (4.15)
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Matching inner and outer velocity fields yields

2

3

(
1 +

xf 0(t)

t

)
= ẋf 0. (4.16)

Thus the leading-order position of the front is given by xf 0(t) = 2t , as expected from
the drag-free dam-break solution. The inner solutions, H0(X, t) and U1(X, t), are
determined by the solutions to (4.13) and (4.15), subject to the boundary conditions
(4.8) and matching to the outer region.

Balancing terms in the momentum equation (4.15) indicates that H0/X ∼ 1/H0 ∼
U1/t . Hence we introduce a similarity variable, η = X/[η1t

4/3] and seek similarity
solutions to (4.15) and (4.13) of the form

H1 = 16
9
η2

1t
2/3H (η), (4.17)

U1 = 4
3
η1t

1/3U (η), (4.18)

Xf 1 = η1t
4/3, (4.19)

where η1 is a constant to be determined as part of the solution. (We will show that
η1 < 0.) The governing equations (4.15) and (4.13) then become

1
2
H − ηH ′ + H ′ − (UH )′ = 0, (4.20)

1
4
U − ηU ′ + U ′ − UU ′ − H ′ = − 81

64η3
1H

, (4.21)

where a prime denotes differentiation with respect to η. The boundary conditions at
η =0 are given by

U (0) = 1 and H (0) = 0, (4.22)

while matching to the outer solution requires that

H → 1
16

(η − 1)2 and U → 1
2
(1 − η) as η → −∞. (4.23)

We numerically integrate these equations, subject to the initial and matching condi-
tions, to determine U (η), H (η) and η1. We note that this system of equations includes
the possibility of a critical transition where the gradient is discontinuous (cf. § 3).
This occurs at positions where H = (U + η − 1)2 and U/2 + η − 1 = 81/[32η3

1H ]. We
plot the height and velocity fields, H (η) and U (η), in figure 8 and calculate η1 =
−2.9976. The critical point at which the gradients are discontinuous occurs at
η = −0.2988.

We also plot in figure 9 the composite matched asymptotic solution for the drag-
affected dam-break solution. In this figure we plot the height and velocity fields,
u(x, t) and h(x, t) as functions of x/t . We note that the effects of drag are to retard
the flow significantly and to introduce a slightly blunted front to the height profile.

The value of η1 for the first-order correction to the speed of the dam-break flow
is somewhat larger than the value calculated by Whitham (1955), who found that
η1 = −2.589. Whitham (1955) used an integral method, rather than the method of
matched asymptotic expansions and hence did not explicitly calculate velocity and
height fields within the drag-affected region close to the front of the flow. Using the
expansions developed here, however, it is possible to clarify the difference between
the two analyses. First we define a position, ξf (t), at the outer edge of the inner tip
region at the front of the flow, such that |xf (t) − ξf (t)| 	 ε. Then mass conservation
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Figure 8. The similarity solutions for the height H (η) and velocity U (η) within the ‘inner’
region at the front of the dam-break flow, plotted as functions of the similarity variable η
(—–). Also plotted are the ‘outer’ height and velocity fields to which these ‘inner’ fields are
matched (- - - -).

Figure 9. The composite solution for the dimensionless height h(x, t) and velocity u(x, t)
fields plotted as functions of x/t at t = 10, 102, 103 and 104 with ε = 10−2 (—–). Also plotted
is the solution in the absence of drag (- - - -). Note that in the bulk of the domain the height
profiles may not be distinguished from the outer solution.



The effects of hydraulic resistance on dam-break flow 197

Figure 10. Comparisons between the experimentally measured position of the front of the
flow as a function of time and the theoretical predictions of Ritter (1892) (—–), § 4 (- - - -)
and § 5 (– · – ·). The experimental data (—–—–) are from Dressler (1954); they correspond to a
dam-break flow of water, arising from an initial dam height of 22 cm and flowing over a
smooth-bottomed flume of width 22.5 cm. For the theory of § 5, we calculate the parameter
values β = 1.017 and Y0 = 0.912 and the drag coefficient, CD = 0.0019, which are determined
from the Reynolds number, R.

yields

d

dt

∫ xf

ξf

h dx = h(ξf )

(
u(ξf ) − dξf

dt

)
, (4.24)

while the integrated momentum equation is given by

d

dt

∫ xf

ξf

hu dx = h(ξf )u(ξf )

(
u(ξf ) − dξf

dt

)
+ 1

2
h2(ξf ) −

∫ xf

ξf

ε3u2 dx. (4.25)

Matching the edge of the boundary to the dam-break solutions (4.1) and (4.2)
permits the height and velocity, h(ξf ) and u(ξf ) to be evaluated, and Whitham (1955)
completes the analysis by assuming that the velocity field within the tip region is
only a function of time, thus permitting the simple evaluation of the integrals in
(4.25). We have found that this is correct to leading order, but at O(ε) there is both
spatial and temporal variation (see figure 8). Thus the speed of the front is somewhat
overestimated using the approach of Whitham (1955).

The leading-order asymptotic theory may be compared to measurements of dam-
break flows in the laboratory. Dressler (1954) conducted a series of relatively large-
scale experiments. We estimate the drag coefficient CD using the empirical formula
proposed by Hager (1988) and given by

CD = 0.025R−0.2, (4.26)

where R = ρ(gh3
0)

1/2/µ. We find that the asymptotic expansion compares well with
the laboratory data at early times and is a considerable improvement on the drag-free
Ritter solution (see figure 10). We also compare the height profile at a relatively early
time and note that the agreement between the theory and experiments is reasonable
(figure 11). In the following section, however, we develop a different asymptotic theory
and find somewhat improved agreement between the two.
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Figure 11. Comparisons between the experimentally measured profile of the dam-break flow
(—–) and the composite expansion (- - - -) as functions of x/t at t = 13.3. The experimental
data are from Dressler (1954); they correspond to a dam-break flow of water, arising from an
initial dam height of 11 cm and flowing over a smooth-bottomed flume of width 22.5 cm.

5. Modified dam-break flow (β > 1)
We now consider flows for which there is shear in the vertical profiles of the velocity

so that the shape factor β > 1. In the subsection that follows we construct the inviscid
solutions to the shallow-water equations and thereafter show how these are modified
by resistive forces. Most importantly we find that the structure of the flow is very
different when β > 1 and the dynamical balance within the drag-affected region close
to the front of the flow is different from that established in § 4.

5.1. Dam-break flows in the absence of drag

We first consider the flow generated in the absence of basal drag by the instantaneous
removal of a vertical dam at x = 0, behind which fluid is at rest. This solution will
form the basis for the matched asymptotic solutions that follow in which drag is only
non-negligible within a region close to the front of the flow.

Neglecting drag the dimensionless momentum equation is given by

∂

∂t
(uh) +

∂

∂x
(βu2h) +

∂

∂x

(
h2

2

)
= 0, (5.1)

while mass conservation is still given by (2.2). (Here as in § 4, we have non-
dimensionalized lengths and times with respect to h0 and (h0/g)1/2, respectively.) We
assume that the shape factor, β , is a function of the velocity and height, β ≡ β(u, h).
For example, it may depend on the local Reynolds number, ρuh/µ (see Reynolds
& Tiederman 1967). In characteristic form these hyperbolic governing equations are
given by

dh

dt
+ γ±

du

dt
= 0 on

dx

dt
= c±, (5.2)

where

c± = βu + 1
2
u2 ∂β

∂u
±

[
u2β(β − 1) + h + u3 ∂β

∂u

(
β − 1 + 1

4
u

∂β

∂u

)
+ u2h

∂β

∂h

]1/2

(5.3)
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and

γ± =
h(c± − u)

u2(β − 1) + h + u2h ∂β/∂h
. (5.4)

Thus at the front, as h → 0, the characteristic velocity is equal to the flow speed if
c+ = u, which implies that

−(β − 1)u2 = u2h
∂β

∂h
. (5.5)

Thus since β remains bounded as h → 0, we deduce that these two velocities are
equal only if β(u, h) → 1, as h → 0. If the limiting value of β exceeds unity then the
characteristic velocity exceeds the front speed and it is not possible to enforce a purely
kinematic condition at the front of the flow, as will be discussed below.

Dam-break flow is generated from the initial conditions that at t = 0, h = 1 for x < 0
and h = 0 for x > 0. The solution is therefore given in terms of simple waves in which
the height and velocity fields are functions of x/t (see Whitham 1974). Using the
characteristic structure given above, we may calculate the solution for any functional
dependence of the shape factor upon the velocity and height fields. For clarity, here
we present results for a constant value of β .

The characteristic equation (5.2) on a forward-propagating characteristic may be
rewritten as

dh

du
= −h((β − 1)u +

√
u2β(β − 1) + h)

u2(β − 1) + h
, (5.6)

and we may integrate this equation, applying the boundary condition that h = 1 when
u = 0 on each characteristic, to obtain the implicit solution for β > 1 and β 
= 9/8:

1 =

[√
h+β(β −1)u2 +

(3−2β)

2
u

]2β−3

h3(β−1)

[√
h+β(β −1)u2 +u

√
β(β −1)√

h+β(β −1)u2 −u
√

β(β −1)

]√
β(β−1)

.

(5.7)

If β = 9/8 then the solution takes a slightly different form and is given by

1 =
1

8
exp

(
2u√

64h + 9u2 + 3u

)
(
√

64h + 9u2 + 3u)5/6(
√

64h + 9u2 − 3u)1/6. (5.8)

Meanwhile, there is a simple-wave expansion fan originating at x = 0, t = 0 such that

x

t
= βu −

√
h + β(β − 1)u2. (5.9)

This solution has some similarity to the classical dam-break solution (β =1) and
some illustrative solutions are plotted in figure 12. We note from (5.9) that when
u = 0 and h =1, x/t = −1, so the speed with which the expansion fan propagates
back into the fluid at rest is independent of β . This is to be expected because inertia
is negligible at the point at which the fluid has just started to accelerate.

We also note from (5.7) that if β > 1, h → 0 only as u → ∞, and it is no longer
possible to identify the location of the moving front of the flow. This phenomenon is
another manifestation of the fact that the characteristic velocity exceeds the fluid velo-
city as h → 0. It means that when β > 1 we can only calculate the position of the front
of the flow by explicitly including the effects of drag. This is in contrast to the classical
dam-break flow with β = 1 discussed in the previous section, for which the leading-
order position of the front was given by the drag-free solution, u =2 when h = 0, and
the effect of drag was to introduce a first-order correction to the propagation. However
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Figure 12. The modified dam-break solutions for the height and velocity fields plotted as
functions of x/t for β = 1 (—–); β = 1.1 (- - - -); and β = 1.2 (– · – ·).

it is physically consistent, since β > 1 implies that there is shear in the vertical profile
of the velocity field, which implies that the flow is necessarily affected by drag forces.
Although the solution given by (5.7) and (5.9) was developed for constant β , it is pos-
sible to construct a dam-break solution for any β(u, h), and the conclusion would be
the same for these flows: at the front the characteristic velocity exceeds the flow speed
and so it is not possible to identify the location of the front if drag forces are neglected.

From (5.7), we find that as u → ∞,

h ∼ K1u
−γ , where γ = 1 +

√
β

β − 1
, (5.10)

and for β 
= 9/8

K
9−8β
1 = [4β(β − 1)](β+3

√
β(β−1))

[√
β(β − 1) + 3

2
− β

](2β−3)(3+
√

β/(β−1))
, (5.11)

while for β = 9/8

K1 = 256 exp(−2)/81. (5.12)

Finally, in the regime x/t 	 1, we obtain the asymptotic behaviour

h ∼ K2

(
x

t

)−γ

and u ∼ γ

γ − 1

x

t
, (5.13)

where K2 = K1[1 − 1/γ ]γ . This asymptotic form of the solution will be employed in
the matching procedure of the following sections.

5.2. Dam-break flows with inertial drag

We now consider how drag forces affect the modified dam-break flow presented above
and, in particular, we show that the inclusion of drag permits the front of the flow
to be calculated. In this subsection we continue to consider a Chézy model of the
drag force, given by (2.5), and so the dimensionless horizontal momentum equation
is given by

∂

∂t
(uh) +

∂

∂x

(
βu2h + 1

2
h2

)
= −CDu2. (5.14)

Since the magnitude of the drag coefficient is small (CD �1), the dam-break solution of
§ 5.1 provides the leading-order asymptotic solution for the flow away from the front.
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However, close to the front, where the depth of the flowing layer becomes small, the
effects of drag are non-negligible. In § 4 we showed that the leading-order dynamics
within the region of the flow close to the front became a balance between the stream-
wise pressure gradient and the basal drag, because the velocity of the fluid motion was
constant to leading order. In the situation now under consideration, this dynamical
balance is no longer possible; instead, the leading-order dynamical balance is between
the fluid inertia and the drag. This occurs because the inertia of the flow is greater
when β > 1 and so it is not possible to maintain a constant velocity within the tip
region.

We may establish the extent of the tip region of the flow by balancing the
fluid inertia term β∂(u2h)/∂x with the drag CDu2, while matching to the modified
dam-break solution requires that u ∼ x/t and h ∼ (x/t)−γ . Thus we deduce that

u = O(C−1/(γ+1)
D ) and introduce a rescaled spatial coordinate within the tip region

given by X = (xf (t) − x)C1/(γ +1)
D . We further pose the following series expansions for

the inner height and velocity fields within the inner region:

u = C
−1/(γ+1)
D U0(X, t) + . . . , (5.15)

h = C
γ/(γ+1)
D H0(X, t) + . . . , (5.16)

xf = C
−1/(γ+1)
D Xf 0(t) + . . . . (5.17)

The leading-order terms in the governing equations are then given by

∂H0

∂t
+ Ẋf 0

∂H0

∂X
− ∂

∂X
(U0H0) = 0, (5.18)

∂

∂t
(U0H0) + Ẋf 0

∂

∂X
(U0H0) − β

∂

∂X

(
U 2

0 H0

)
= −U 2

0 . (5.19)

These equations are subject to the following boundary conditions at the front:

U0(0, t) =
dXf 0

dt
and H0(0, t) = 0. (5.20)

Furthermore matching to the outer field yields

U0 → γ

γ − 1

Xf 0 − X

t
and H0 → K2

(Xf 0 − X)−γ

t−γ
as X → ∞. (5.21)

This system of equations admits similarity solutions of the form

Xf 0 =
γ + 1

γ
Y0t

γ /(γ+1), (5.22)

H0 =

(
γ + 1

γ
Y0

)−γ

tγ /(γ+1)H (Y ), (5.23)

U0 =
γ + 1

γ
Y0t

−1/(γ+1)U (Y ), (5.24)

where the similarity variable is given by Y = γX/[(γ + 1)Y0t
γ /(γ+1)]. Therefore the

governing equations are given by

H + (1 − Y )H ′ − γ + 1

γ
(UH )′ = 0, (5.25)

γ − 1

γ
UH + (1 − Y )(UH )′ − β(γ + 1)

γ
(U 2H )′ = −γ + 1

γ

[
(γ + 1)Y0

γ

]1+γ

U 2, (5.26)
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Figure 13. The similarity solutions for the height H (Y ) and velocity U (Y ) within the ‘inner’
region at the front of the modified dam-break flow subject to inertial drag with β = 6/5, plotted
as functions of the similarity variable Y (—–). Also plotted are the ‘outer’ height and velocity
fields to which these ‘inner’ fields are matched (- - - -).

where a prime denotes differentiation with respect to Y . The boundary conditions are
U (0) = γ /(γ + 1) and H (0) = 0, while matching to the far field is now given by

H → K2(1 − Y )−γ and U → γ

γ − 1
(1 − Y ) as Y → 1. (5.27)

These equations (5.25)–(5.26) are integrated numerically, with the constant Y0 being
determined as part of the numerical solution. We find that there is an internal
critical point at which the gradients of U and H are discontinuous, but the functions
themselves are continuous. We plot the functions U (Y ) and H (Y ) in figure 13,
calculated for the case β = 6/5. In this case the transition occurs at Y = 0.2694 and
Y0 = 0.6242.

We now compare this leading-order asymptotic theory with laboratory observations
of dam-break flow over horizontal, initially dry surfaces; we re-examine the data of
Dressler (1954) discussed in the preceding section and we investigate the more recent
experiments of Lauber (1997). To apply our new asymptotic theory, we first estimate
values of the drag coefficient, CD , using the empirical expression suggested by Hager
(1988). Furthermore we calculate the shape factor β as a function of the Reynolds
number R, using the empirical representation of the velocity profile given by Reynolds
& Tiederman (1967). For each of the experimental series we calculate β and solve the
differential equations to find Y0. The procedure requires no empirical calibration of the
parameters beyond that carried out, using different data, by Reynolds & Tiederman
(1967) and Hager (1988).

Comparisons between the theoretical predictions and the experimental measure-
ments are given in figures 10 and 14. We find the agreement between the two is good,
and a significant improvement on the drag-free dam-break solution.

It should be noted, however, that this theory is a leading-order expression for the
front speed and that we should expect higher-order terms, such as the hydrostatic
pressure gradient, to become significant at later times. Furthermore, the theory is
hydrostatic; vertical accelerations are assumed to be negligible. This assumption will
not hold during the very early phases of the flow. Lauber & Hager (1998) suggest that
non-hydrostatic effects are of dynamical significance during the first

√
2 dimensionless
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Figure 14. The position of the front of the dambreak flow as a function of time. Experimental
data (◦) are from Lauber (1997) and correspond to an initial dam height of 30 cm within a
smooth-bottomed flume of width 50 cm. The theoretical prediction (—–) is with CD = 0.0018,
β = 1.015 and Y0 = 0.934. Also plotted is the drag-free solution of Ritter (1892) (– – –).

time units. Indeed, the results presented in figure 14 suggest that an offset of this
order to the time-origin of the solutions would improve the agreement between theory
and experiment still further; in the absence of a more complete theory of the early
phases of the flow, however, we do not employ such a correction.

5.3. Dam-break flows of Newtonian and power-law fluids with drag

In this subsection we extend the analysis of these modified dam-break flows to model
the ‘viscous’ drag force due to either a Newtonian fluid or a fluid with a power-
law rheology. A depth-averaged horizontal momentum equation for these flows was
derived in § 2 and in this context the dimensionless equation is given by

∂

∂t
(uh) +

∂

∂x

(
βu2h + 1

2
h2

)
= −cnεn

(
u

h

)n

, (5.28)

where εn = µ̃ng
−1+n/2/[h1+n/2

0 ρ] and the coefficients β and cn are functions of the
power-law index n (see (2.9)). Recall that a Newtonian fluid corresponds to n= 1,
while shear-thinning fluids have n< 1 and shear-thickening fluids have n> 1.

Basal drag is negligible throughout most of these flows since it is assumed that
εn � 1. However, as in the preceding subsection, the effects of drag cannot be neglected
close to the front where the depth of the flow becomes small, and for the modified
dam-break flows it is not possible to identify the front position in the absence of
drag. As before, we include the effects of non-negligible drag by forming a matched
asymptotic expansion between a region close to the front and the main body of the
flow. In the tip region the dynamical balance is between the fluid inertia and the basal
drag and we find the following distinguished scalings:

u = ε−1/α
n U0(X, t) + . . . , (5.29)

h = εγ/α
n H0(X, t) + . . . , (5.30)

xf = ε−1/α
n Xf 0(t) + . . . , (5.31)
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where α = γ (n+ 1) + n − 1 and X = xf (t) − x. In this regime the governing equations
to leading order are given by

∂H0

∂t
+ Ẋf 0

∂H0

∂X
− ∂

∂X
(U0H0) = 0, (5.32)

∂

∂t
(U0H0) + Ẋf 0

∂

∂X
(U0H0) − β

∂

∂X

(
U 2

0 H0

)
= −cn

(
U0

H0

)n

. (5.33)

These equations are subject to the same boundary conditions as in the preceding
subsection, namely (5.20) and (5.21). We may construct similarity solutions to this
system of equations of the form

Xf 0 =
α

α − 1
y0t

(α−1)/α, (5.34)

U0 =
α

α − 1
y0t

−1/αU (y), (5.35)

H0 =

(
αy0

α − 1

)−γ

tγ /αH (y), (5.36)

where α = γ (n+ 1) + n − 1 and the similarity variable y = X/Xf 0. Thence conservation
of mass and momentum are given by

γ

α
H +

α − 1

α
(1 − y)H ′ − (UH )′ = 0, (5.37)

γ − 1

α
UH +

α − 1

α
(1 − y)(UH )′ − β(U 2H )′ = −cn

(
αy0

α − 1

)α (
U

H

)n

. (5.38)

The matching conditions in terms of these similarity variables are now given by

U → (γ /(γ − 1))(1 − y) and H → K2(1 − y)−γ as y → 1, (5.39)

and the boundary conditions are H (0) = 0 and U (0) = (α − 1)/α. We integrate these
equations numerically using a shooting method to determine y0. At y = 0 the right-
hand side of (5.38) is singular and so we construct a power-series expansion in
the regime y � 1 and then integrate numerically from y = y∗ � 1. We find that the
numerical solution is insensitive to the value of y∗ provided it is sufficiently small. In
the regime y � 1 we find that

U =
α − 1

α
+ . . . and H =

[
cn(n + 1)

β − 1

(
αy0

α − 1

)α(
α − 1

α

)n−2

y

]1/(n+1)

+ . . . .

(5.40)

This system of equations admits solutions that have critical points at which the height
and velocity fields are continuous, but their gradients are discontinuous (cf. § 3).

We have integrated these equations numerically for a range of values of n (see
table 1) and we plot the similarity functions for a Newtonian fluid (n = 1) and for a
shear-thinning fluid (n= 1/3) (figure 15). Although not clearly visible in the height
and velocity profiles shown in figure 15, we find that all have a small local maximum
in the height fields at the frontal side of the critical point. This corresponds to the
small kink in the plotted profiles. The magnitude of this local maximum becomes
more pronounced as n decreases.

As before, the most noticeable feature of these profiles is that the current is ‘blunt-
nosed’ with ∂h/∂x becoming singular at the front of the flow, because fluid piles up
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n β γ cn (α − 1)/α yc y0

1 1.2 3.449 3 0.855 0.259 0.498
3/4 1.176 3.582 2.467 0.834 0.238 0.492
2/3 1.167 3.646 2.305 0.826 0.229 0.491
1/2 1.143 3.828 2 0.809 0.208 0.492
1/3 1.111 4.162 1.710 0.795 0.180 0.507
1/4 1.091 4.464 1.565 0.793 0.163 0.529
1/5 1.077 4.742 1.476 0.796 0.151 0.552
1/10 1.043 5.589 1.282 0.821 0.119 0.656

Table 1. Numerically calculated factors for power-law fluids with exponent n; yc denotes the
position at which the critical transition occurs.

Figure 15. The similarity solutions for the height H (y) and velocity U (y) within the ‘inner’
region at the front of the modified dam-break flow subject to viscous drag plotted as functions
of the similarity variable y for (a) Newtonian fluid (n= 1) and (b) shear-thinning fluid (n= 1/3).

within the region close to the front where it is decelerated by drag forces. Likewise,
the velocity of the flow is reduced and it attains a maximum at some distance behind
the front.

As the fluid becomes shear thinning (n decreases from unity), the velocity profile
becomes more vertically uniform and the shape factor β decreases towards unity. Con-
sequently, the difference between the frontal and characteristic velocities is reduced.
In addition, the drag force becomes more weakly dependent on the height and less
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strongly singular as the height diminishes towards the front. Thus the tendency of
fluid to accumulate behind the front is also diminished and the profiles are less blunt-
nosed. (The height field h ∼ (xf − x)1/(n+1) when |xf − x| � 1.)

The rate of propagation of the front is proportional to t (α−1)/α , where the exponent
(α − 1)/α decreases as n is at first reduced from unity, before attaining a local mini-
mum at n= (2

√
2 − 1)/7 at which the exponent takes the value (α − 1)/α = (3 −

√
2)/2.

Thereafter as n decreases further, the exponent increases towards unity. This behaviour
is a consequence of the two characteristics of shear-thinning fluid described above. The
drag is proportional to (u/h)n ∼ (x/t)(1+γ )n, which increases as n is reduced from unity
because the flow is decelerating. This increased drag means that we expect the rate of
propagation to decrease as n decreases from unity. At the same time, as n decreases,
the velocity profile becomes more uniform vertically (β becomes closer to unity). As
a result, the difference between the characteristic and ‘outer’ dam-break velocities is
reduced and so the extent of the region over which drag forces are significant is also
reduced. This results in a smaller reduction of flow speed; hence these two process
have opposing effects on the flow speed exponent. We find that initially the increased
drag is the dominant effect as n is reduced from unity, but progressively the reduction
in the mismatch between the flow and characteristic velocities means that the flow
speed exponent increases and approaches unity as n → 0.

6. Conclusions
In this study we have considered the effects of hydraulic resistance on a number

of shallow inertial flows over a horizontal rigid boundary. In particular, we have
calculated the way in which drag slows the propagation of the fluid front.

For gravity currents supplied by a continuous flux of fluid which increases as t3,
we have developed similarity solutions in which fluid inertia, hydrostatic pressure
gradients and hydraulic drag all contribute to the dominant dynamical balance in the
flow (§ 3). This somewhat idealized scenario allows us to investigate the control which
drag exerts on the form of solutions. One of the most noticeable effects of drag is
that the shape of the current is altered close to the front where the current is at its
thinnest. In this region, the current is most strongly affected by drag and so it steepens
to develop an increased streamwise pressure gradient which counters the hydraulic
resistance. We find that the shape of the current is proportional to (xf − x)1/2 as
the front is approached. When we permit the horizontal velocity to include shear
(β > 1), we find that it is no longer possible to construct similarity solutions in the
absence of drag. We find that it is not possible to satisfy the boundary conditions at
the front. This arises because the characteristic velocity exceeds the fluid speed: this
is discussed further below in the context of dam-break flows. We also find that the
critical conditions are attained at Froude numbers less than unity; this is in accord
with the results of Garrett & Gerdes (2003).

As for the drag-free gravity currents described by Gratton & Vigo (1994), our
solutions for the height and velocity fields may be continuous, discontinuous, or conti-
nuous with a critical transition at which the spatial gradients of velocity and depth
are discontinuous. This last possibility in particular seems to be a common feature of
inertial flows with drag in which there is a need for an inertially controlled flow at the
source to adjust at some point to a partly drag-controlled regime near the front of the
current. Indeed, we find that such a transition occurs in all the flows analysed in § § 4,5.

These flows with a velocity-dependent drag are to be contrasted with those resisted
by Coulomb drag (Appendix). Coulomb resistance acts uniformly over the length
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of the current and so although it also leads to a somewhat increased pressure
gradient, which is necessary to overcome the additional resistance, it does not lead
to the severe steepening found with velocity-dependent drag. For gravity currents
supplied by a flux of fluid which increases as t3 we have also constructed similarity
solutions for the motion in which the fluid inertia, pressure gradient and Coulomb
drag are of the same order of magnitude. These solutions exhibit the same range
of behaviour: they may be continuous, discontinuous or continuous with a point of
critical transition.

We have also considered dam-break flows, for which we have investigated the
effects both of hydraulic drag and of vertical shear in the velocity profile. In such
flows, in contrast to the gravity currents of § 3, drag may become significant only in
a small region close to the front of the current where the depth becomes small. We
have demonstrated how matched-asymptotic expansions may be developed to relate
these two dynamical regimes, and used this approach to obtain new leading-order
estimates for the effect which drag terms have on the speed of the front.

In the case where the vertical variation of velocity is neglected (§ 4), the dynamical
balance close to the front is between drag and the streamwise pressure gradient.
Our results are directly comparable to those obtained by Whitham (1955) using
less advanced asymptotic techniques. We find that the earlier result underpredicts
the reduction of front velocity by around 20%, and that this may be attributed to
Whitham’s neglect of the spatial variation of velocity in the drag-affected region.

When vertical shear is incorporated, the characteristic structure of the shallow-water
equations is substantially altered (§ 5). As a consequence, we find that in the absence
of drag it is no longer possible to impose a kinematic boundary condition at the front
of the current; rather, drag must be included in order to obtain the leading-order
prediction of the front position. We have developed simple-wave solutions in the
‘outer’ (drag-free) regions, and have again used a matched-asymptotics approach to
obtain descriptions of the ‘inner’ region and estimates of the front speed.

These modified dam-break solutions with drag have some interesting properties.
Although the propagation speed of the front is rather different from either the
inviscid dam-break solution (Ritter 1892) or the drag-affected solutions considered in
§ 4, the overall anatomy of the currents is very similar. Away from the front, the free
surface forms a convex-upwards expansion wave; while within the front, although
the dominant dynamical balance is between fluid inertia and hydraulic drag rather
than between hydrostatic pressure gradients and drag, the height profiles of the flows
are rather similar to those without vertical shear: a blunt ‘toe’ with a small local
maximum of depth behind it and a point of critical transition behind that. This
similarity may be one reason why the significance of the vertical velocity profile has
not been remarked upon in previous studies of dam-break and related flows.

Although most of our calculations have been carried out employing a Chézy friction
law suitable for turbulent flow, a link may also be made to laminar inertial flows (such
as large-scale mudflows) in which the shear profile and drag depend directly on the
fluid rheology. We have demonstrated the effect of employing Newtonian and power-
law rheologies, using the same matched-asymptotics method as before. For a shear-
thinning power-law fluid, it is interesting to examine the competing effects on the front
speed as the degree of shear-thinning is varied: for a weakly shear-thinning fluid, drag
is increased relative to a Newtonian fluid and thus the speed is reduced, but as the
fluid becomes more strongly shear-thinning, the more uniform velocity profile allows
the injection of more momentum into the front region, and so increases the front
speed again.
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We have compared our theoretical predictions to experimental measurements of
high-Reynolds-number dam-break flows in the laboratory and have shown that there
is quite good agreement between the two. Several issues, however, remain to be
investigated experimentally, and we suggest that they may be interesting topics for
future laboratory studies. In particular, the results of § § 4 and 5 suggest the need for
experimental measurements of the vertical profile of the horizontal velocity field; for
dam-break experiments performed with non-Newtonian fluids; and for observations
with a sufficiently high temporal resolution to permit a full investigation of the initial,
and potentially non-hydrostatic, motion. The predictions for drag-affected gravity
currents (§ 3) should also be verified experimentally.

In addition to their interest as fundamental flow problems, these results have direct
applications to a range of environmental situations. Dam-break flows in particular are
an important model for events ranging from break-out floods to sheet flow events in
coastal hydrodynamics, and even in circumstances in which the results presented here
are not directly applicable, they provide for the first time a set of analytical predictions
against which the output of numerical shallow-water schemes may be validated. They
may have a similar role to play in the further investigation of phenomena such
as mudflows and debris flows, in which they suggest that the correct resolution of
the vertical variation of velocity may be more important than has generally been
assumed. In this context, it would also be of interest to extend these results to the
systems of hyperbolic equations which result when a yield-stress fluid is modelled in
a shallow-water framework (Piau 1996; Mei et al. 2002).

Another possible extension of this study would be to investigate the effects of drag-
affected dam-break flows as agents of sediment transport, complementing the previous
studies by Capart & Young (1998), Fraccarollo & Capart (2002) and Pritchard &
Hogg (2002). Some preliminary work on this set of problems has already been carried
out Hogg & Pritchard (2003).

Finally, we note that the methods developed in this study could be extended to
investigate the effects of drag on some closely related shallow-water flows. A parti-
cularly important class of flows represent fluid motion on a sloping beach, either
in the context of swash motions driven by breaking waves (Shen & Meyer 1963;
Peregrine & Williams 2001) or of the run-up of solitary waves such as tsunamis
(Carrier, Wu & Yeh 2003). Insight into the effects of friction in retarding these flows
would therefore be of value in a range of physically important situations.

A. J.H. and D. P. acknowledge the financial support of EPSRC. D. P. also acknow-
ledges the financial support of the Newton Trust through the BP Institute, University
of Cambridge. Insightful comments from an anonymous referee are gratefully
acknowledged.

Appendix. Coulomb drag
In this Appendix we consider the drag-affected motion of shallow flows when the

basal drag is modelled as a Coulomb resistance. This approach has been employed
in studies of debris flows (Iverson 1997; Iverson & Denlinger 2001) and granular
avalanches (Savage & Hutter 1989). In dimensional form the basal drag is given by

τb =
ρghu tan δ

|u| , (A 1)

where δ is the empirically determined friction angle. For an incompressible flow,
conservation of mass is still given by (2.2), while the dimensional streamwise
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momentum equation is given by

∂

∂t
(uh) +

∂

∂x

(
βu2h + 1

2
gh2

)
= −ghu tan δ

|u| . (A 2)

We study two flows with this drag force: the motion of a gravity current for which
drag, inertia and buoyancy are of the same order; and dam-break flow.

A.1. Gravity currents

By balancing the inertial, pressure gradient and drag terms, we find that it is possible
to seek a similarity solution for the motion of the form (3.5)–(3.7). Mass conservation
is then given by (2.2), while the streamwise momentum equation with β = 1 in terms
of the similarity variables is given by

1
2
U − yU ′ + UU ′ + H ′ = −ε̃, (A 3)

where ε̃ = tan δ/(4λ). The boundary conditions are given by (3.11) and (3.12).
The types of solution are similar to those constructed in § 3, namely continuous,

continuous with a point of critical transition and discontinuous solutions. First we
note that a simple solution is given by

U = 1 and H =
(

1
2

+ ε̃
)
(1 − y). (A 4)

At the source (y =0), this solution gives F0 = (ε̃ + 1/2)−1/2 and λ−3 = 4(1 + 2ε̃). It is
also the series solution expansion in the regime |y − 1| � 1, for all values of F0 and ε̃.
Critical conditions are attained when

Uc = 2(yc + ε̃) and (Hc − yc)
2 = Hc, (A 5)

where Uc = U (yc) and Hc =H (yc). Thus using (A 4) we deduce that yc = 1
2

− ε̃. The
minimum value of ε̃ for which continuous supercritical solutions may be found
corresponds to yc = 0. Thus ε̃ =1/2 and so tan δ =1. For values of tan δ greater than
unity we may only construct discontinuous supercritical solutions, whereas for values
of tan δ less than unity we may construct continuous and discontinuous solutions.
This is analagous to the difficulties encountered in § § 3.2 and 3.3, where we found
that too large a drag coefficient required a discontinuous transition to match the
drag-retarded flow near the nose of the current to the supercritical flow at the source.

To construct the continuous solutions we expand U (y) and H (y) in power series
for |y − yc| � 1. As in § 3 we find that there are two possible series expansions. They
are given by

U = 1 − 1
2
(y − yc) − 5

16(1 + 2ε̃)
(y − yc)

2 + . . . , (A 6)

H =
(

1
2

+ ε̃
)2 −

(
1
4

+ 1
2
ε̃
)
(y − yc) − 5

32
(y − yc)

2 + . . . (A 7)

and

U = 1 + a1(y − yc)
5/2 + . . . , (A 8)

H =
(

1
2

+ ε̃
)2 −

(
1
2

+ ε̃
)
(y − yc) − a1

(
1
2

+ ε̃
)
(y − yc)

5/2 + . . . , (A 9)

where a1 is an undetermined constant. Using the first of these expansions to initiate
the numerical integration away from the point of critical transition at y = yc yields
the maximum source Froude number F0 = F0m(tan δ) for which continuous solutions
may be constructed. Further continuous solutions may be found for 1 � F0 <F0m

using the second series and varying the constant a1. When tan δ > 1 there are no
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Figure 16. Regimes of continuous and discontinuous similarity solutions for inertial gravity
currents as functions of the source Froude number F0 and the Coulomb friction coefficient tan δ.
Continuous solutions are possible for 1 � F0 � F0m(tan δ), while discontinuous, supercritical
solutions are possible when F0 > F0m(tan δ) and tan δ < 1, and when F0 > F0s(tan δ) and
tan δ > 1. Continuous subcritical solutions exist for F0 = F0b(tan δ).

supercritical continuous solutions, although there is a unique subcritical solution for
each value of tan δ given by (A 4); this curve is denoted F0 = F0s(tan δ). Furthermore
when tan δ > 1, discontinuous solutions can be found only for F0 > F0s(tan δ), where
the flow with source Froude number F0s has a discontinuity at y = 0. The regime of
possible solutions is shown in figure 16.

A.2. Dam-break flow

For dam-break flow, using a lengthscale h0 and timescale (h0/g)1/2, where h0 is the
initial height of the fluid behind the dam, the dimensionless streamwise momentum
equation is given by

∂

∂t
(uh) +

∂

∂x

(
βu2h + 1

2
h2

)
= −huε̂

|u| , (A 10)

where ε̂ = tan δ.
The form of the drag in (A 10) is very different from the forms investigated in

§ § 4,5. The relative magnitude of the drag does not increase towards the front of
the flow and thus its effects are uniform throughout the entire flow. We demonstrate
below that when β = 1 it is simple to calculate how drag retards the front of the flow.
However, when β > 1 we are unable to resolve the problem encountered in § 5 of
finding the front of the modified dam-break flow. In both cases the effects of drag are
spatially uniform so that there is no need to construct matched asymptotic regions
within which different force balances govern the motion. We note that both Iverson
(1997) and Savage & Hutter (1989) indicate that β should be equal to unity.

When β = 1, it is simple to write the governing equations (2.2) and (A 2) in
characteristic form. This is given by

d

dt
(u + 2

√
h) = − ε̂u

|u| on
dx

dt
= u +

√
h, (A 11)

d

dt
(u − 2

√
h) = − ε̂u

|u| on
dx

dt
= u −

√
h. (A 12)
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The front, xf (t), corresponds to the foremost characteristic on which h = 0. Starting
from dam-break initial conditions we find that

u = 2 − ε̂t on
dxf

dt
= u. (A 13)

Thus the front is given by

xf = 2t − 1
2
ε̂t2. (A 14)

This is valid provided u > 0, which corresponds to t < 2/ε̂. At t = 2/ε̂ the flow has
reached its maximum extent of xf = 2/ε̂.
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